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Abstract
Expressions for the Baker–Akhiezer function and their logarithmic space and
time derivatives are derived in terms of the matrix elements of U − V matrices
and ‘squared basis functions’. These expressions generalize the well known
formulas for the KdV equation case and establish links between different forms
of the Whitham averaging procedure.

PACS number: 02.30.Jr

It is well known that the Baker–Akhiezer (BA) function plays a central role in the finite-gap
integration method of completely integrable equations (see, e.g., [1]). This method permits one
to obtain the BA function in terms of Riemann θ -functions and, consequently, a quasi-periodic
solution of the equation under consideration.

At the same time, some other expressions for the BA function are of great importance in
the general theory of the finite-gap integration method and its applications. As a key example
we note the well known formulas from the theory of KdV equation hierarchy

ut = 1

2
Bxxx + 2Bx(u + λ) + Bux (1)

which is a compatibility condition of two linear equations

ψxx = −(u + λ)ψ ψt = −1

2
Bxψ + Bψx (2)

where B = 4λ−2u for the KdV equation ut + 6uux +uxxx = 0, and which can easily be found
for higher KdV equations by means of simple recursion relations (see, e.g., [2–4]). Then the
solution of equations (2) can be written in the form

ψ± = √
g exp

(
± i
√
P(λ)

∫ x dx

g

)
(3)
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where the product g = ψ+ψ− of two basis functions satisfies the equations

gxxx + 2uxg + 4(u + λ)gx = 0 gt = Bgx − Bxg. (4)

The first equation here has the first integral
1
2ggxx − 1

4g
2
x + (u + λ)g2 = P(λ) (5)

where P(λ) is an odd-degree polynomial in λ. If P(λ) is the (2n + 1)-degree polynomial

P(λ) =
2n+1∏
i=1

(λ− λi) = λ2n+1 − s1λ
2n + s2λ

2n−1 + · · · + s2nλ− s2n+1 (6)

then g is the n-degree polynomial

g =
n∏
i=1

(λ− µi) = λn − σ1λ
n−1 + σ2λ

n−2 + · · · + (−1)nσn (7)

whose coefficients are expressed in terms of u and its x derivatives by the trace formulas

σ1 = ∑
µi = 1

2 (u + s1)
σ2 = ∑

i<j µiµj = 1
4 (uxx + 3u2) + 3

2 s1u + s2 − 1
4 s

2
1

. . . .

(8)

Substitution of equations (7) and (8) in equation (3) yields the BA function in terms of the
potential u(x, t) and its x derivatives. Differentiation of equation (3) with respect to x gives

ψ±
x

ψ± ≡ (lnψ±)x = gx ± 2i
√
P(λ)

2g
. (9)

From the second equation (4) we have the conservation law(
1

g

)
t

=
(B
g

)
x

(10)

and, hence, differentiation of equation (3) with respect to t gives

ψ±
t

ψ± ≡ (lnψ±)t = gt ± 2i
√
P(λ)B

2g
. (11)

Thus, the logarithmic derivatives of the BA fuctions provide the generating functions of
densities and flows for sequence of conservation laws of the KdV equation1.

A natural question arises: how one can generalize the formulas (3), (9) and (11) for the BA
function and its logarithmic derivatives on other integrable systems. Some particular results in
this direction were obtained in [6] for the AKNS hierarchies corresponding to the Zakharov–
Shabat spectral problem. Here we shall derive by a simple and direct method the formulas
of that kind for the general form of the 2 × 2 AKNS scheme without any specializing of the
‘U − V’ matrices.

We shall start from two linear systems

ψ1,x = Fψ1 +Gψ2 ψ1,t = Aψ1 + Bψ2

ψ2,x = Hψ1 − Fψ2 ψ2,t = Cψ1 − Aψ2
(12)

which constitute the AKNS scheme (in [7] this was discussed for a particular case with
F = −iλ, G = q(x, t), H = r(x, t)), where the coefficients depend on an arbitrary spectral

1 Note that the equations (3), (5) and (9), as well as some other facts from the finite-gap integration method, were
discovered as early as in 1919 by J Drach in his remarkable but forgotten papers [5]. I am grateful to Yu V Brezhnev
for information about these papers.
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parameter λ and functions uk(x, t) whose evolution is governed by the equations resulting
from the compatibility conditions ψ1,xt = ψ1,tx , namely,

Ft − Ax + CG− BH = 0
Gt − Bx + 2(BF − AG) = 0
Ht − Cx + 2(AH − CF) = 0.

(13)

The systems (12) have two basis solutions ψ± = (ψ±
1 , ψ

±
2 ) from which ‘squared basis

functions’

f = − i

2

(
ψ+

1ψ
−
2 + ψ−

1 ψ
+
2

)
g = ψ+

1ψ
−
1 h = −ψ+

2ψ
−
2 (14)

can be constructed. They satisfy the following linear systems:

fx = −iHg + iGh ft = −iCg + iBh
gx = 2iGf + 2Fg gt = 2iBf + 2Ag
hx = −2iHf − 2Fh ht = −2iCf − 2Ah.

(15)

From equations (13) and (15) the important relations(
G

g

)
t

=
(
B

g

)
x(

H

h

)
t

=
(
C

h

)
x

(16)

can be obtained [8] which represent the generating functions for conservation laws of the
evolution equations (13). The constancy of the Wronskian of systems (12) yields the relation

− 1
4 (ψ

+
1ψ

−
2 − ψ−

1 ψ
+
2 )

2 = f 2 − gh = P(λ) (17)

and periodic solutions of equations (13) are distinguished by the condition that P(λ) be a
polynomial in λ.

Our aim is to obtain formulas analogous to equations (3), (9) and (11) for ψ±. To this end
we notice that the square root from equation (17),

i

2
(ψ+

1ψ
−
2 − ψ−

1 ψ
+
2 ) =

√
P(λ)

(another choice of sign interchanges ψ+ and ψ−) and the first equation of (14) yield the
identities

−iψ+
1ψ

−
2

f − √
P(λ)

= −iψ−
1 ψ

+
2

f +
√
P(λ)

= 1 (18)

and that equation (17) can be rewritten in the form

gh = (
f −

√
P(λ)

)(
f +

√
P(λ)

)
. (19)

Then we have a chain of simple transformations

ψ+
1,x = Fψ+

1 +Gψ+
2

= 1

2g
(gx − 2iGf )ψ+

1 +G
−iψ+

1ψ
−
2

f − √
P(λ)

ψ+
2 by (15) and (18)

= 1

2g

[
gx − 2iG

(
f − gh

f − √
P(λ)

)]
ψ+

1 by (14)

= 1

2g
(gx + 2i

√
P(λ)G)ψ+

1 by (19)
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and similar calculations can be done for the other x derivatives of ψ±. As a result we obtain
the formulas

ψ±
1,x = 1

2g

(
gx ± 2i

√
P(λ)G

)
ψ±

1

ψ±
2,x = 1

2h

(
hx ± 2i

√
P(λ)H

)
ψ±

1

(20)

for which integration yields

ψ±
1 = √

g exp

(
± i
√
P(λ)

∫ x G

g
dx

)
(21)

ψ±
2 = √−h exp

(
± i
√
P(λ)

∫ x H

h
dx

)
. (22)

Differentiation of these relations with respect to t gives, taking into account equations (16),

ψ±
1,t = 1

2g

(
gt ± 2i

√
P(λ)B

)
ψ±

1

ψ±
2,t = 1

2h

(
ht ± 2i

√
P(λ)C

)
ψ±

2 .

(23)

These are the formulas for the BA functions we wanted to obtain.
As a simple application of these results let us note that equations (20) and (23) written in

the form (
ln
ψ+

1√
g

)
x

= ± i
√
P(λ)

G

g(
ln
ψ+

1√
g

)
t

= ± i
√
P(λ)

B

g

(24)

(and similar formulas for ψ±
2 ) show that in the AKNS scheme the Whitham averaging over

fast variation of the quasi-periodic solution with slowly modulated parameters (zeros of the
polynomial P(λ)) performed according to Krichever’s rule (see, e.g., [9])[(

ln
ψ+

1√
g

)
x

]
t

=
[(

ln
ψ+

1√
g

)
t

]
x

(25)

is equivalent to the rule suggested in [8] (see also [4])(√
P(λ)

G

g

)
t

=
(√

P(λ)
B

g

)
x

(26)

where the line over an expression denotes its average.
Let us illustrate these results by a simple concrete example of one-phase periodic solution

of the nonlinear Schrödinger (NLS) equation

iut + uxx + 2|u|2u = 0 (27)

which can be presented as a compatibility condition of the linear systems (12) with the
coefficients

F = −iλ G = iu H = iu∗

A = −2iλ2 + i|u|2 B = 2iuλ− ux C = 2iu∗λ + u∗
x.

(28)

The one-phase solution corresponds to the fourth-degree polynomial (17)

P(λ) = λ4 − s1λ
3 + s2λ

2 − s3λ + s4 (29)
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(see, e.g., [4]), and in this case the solution of the system (15) is given by

f = λ2 − f1λ + f2 g = iu(λ− µ) h = iu∗(λ− µ∗) (30)

where

f1 = s1/2 f2 = (
s2 − s2

1/4 − |u|2) /2 (31)

and the auxiliary spectrum point µ satisfies the Dubrovin equations

µx = −2i
√
P(µ) µt = s1µx (32)

and is connected with u by the trace formula

ux = 2iu(µ− s1/2). (33)

With the use of these relations, the first formula (21) transforms at once to

ψ±
1 =

√
iu(λ− µ) exp

(
± i
√
P(λ)

∫ x dx

λ− µ

)

=
√

iu(λ− s1/2)− ux/2 exp

(
± i
√
P(λ)

∫ x dx

λ− s1/2 + i(ln u)x/2

)
(34)

and similar expressions can be written for ψ±
2 .

The last line of (34) givesψ±
1 in terms of u, ux , constant parameters si, i = 1, 2, 3, 4, and

the spectral parameter λ. However, in some applications it is more convenient to use the first
line of (34) due to simplicity of the corresponding logarithmic derivatives (24). In particular,
for the NLS equation case, the averaged generating function (26) of the conservation laws
takes the form (√

P(λ)
1

λ− µ

)
t

=
(√

P(λ)

(
2 +

s1

λ− µ

))
x

(35)

and averaging with the use of (32) according to the rule

1

λ− µ
= 1

L

∮
dx

λ− µ
= i

2L

∮
dµ

(λ− µ)
√
P(λ)

where L is the wavelength, leads very easily to the Whitham modulational equations (see,
e.g., [4]). A similar approach applies to many other equations described by the AKNS inverse
scattering scheme.

Finally, I note that in the recent paper [10] a method was suggested for obtaining
expressions for BA functions in terms of potentials, which was based on Novikov’s
representation of the finite-gap solution as a stationary solution of the so-called Lax–Novikov
equations involving higher equations of the hierarchy under consideration. A simple method
presented here gives the same results after expressing g in terms of potentials uk(x, t) that
can be easily achieved by the use of trace formulas. It does not use higher equations of the
hierarchy under consideration, yields also the temporal counterparts of formulas for logarithmic
derivatives of the BA functions, but is restricted to the AKNS scheme only.

I am grateful to Yu V Brezhnev for useful discussions. This work was partially supported by
RFBR (grant 01–01–00696) and FAPESP (Brazil).
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